Les Hypovanadates Alcalinoterreux. Evolution Structurale de la Série CaV_nO_{2n+1} (n = 1, 2, 3, 4)

JEAN-CLAUDE BOULOUX ET JEAN GALY

Laboratoire de Chimie du Solide, Université de Bordeaux I, 351 cours de la Libération, 33405 Talence, France

Received April 28, 1975

Six vanadates (+IV) have been synthesized by solid-state reactions and characterized in the $MO-VO_2$ systems (M = Ca, Sr, Ba): CaVO₃, CaV₂O₅, CaV₃O₇, SrV₃O₇, CaV₄O₉, and SrV₅O₁₁. Structural data are given. The structural evolution of the series CaV_nO_{2n+1} is described as *n* increases from n = 1 to n = 4; the vanadium +IV has a fivefold square pyramid coordination.

Les systèmes $MO-VO_2$ (M = Ca, Sr, Ba) ont fait l'objet de plusieurs mémoires antérieurs, le plus souvent fragmentaires aussi bien du point de vue de la synthèse que de l'étude radiocristallographique.

Rudorff, Walter et Becker (1) avaient préparé CaVO₃ de type perovskite cubique avec a = 3.76 Å. D'après ces auteurs cette phase ne se formerait qu'en présence de vapeur d'eau ou que si la chaux était introduite dans le mélange réactionnel sous forme de carbonate de calcium. Une variété orthorhombique de CaVO₃ préparée à 1300°C sous hélium avait été signalée par Roth (2); ses paramètres cristallins étaient: a = 5.326 Å. b = 7.547 Å et c = 5.352 Å. Par action à 900°C de la chaux sur l'oxyde VO_2 , Déduit (3) mettait en évidence une variété cubique simple de CaVO₃ de paramètre a = 9.30 Å, se transformant en variété perovskite après recuit de huit jours à la même température. Enfin Chamberland et Danielson (4) ont obtenu récemment par synthèse directe sous pression de 65 kb CaVO₃ de type perovskite déformée avec les paramètres: a = 5.321 Å, b = 5.335 Å et c = 7.540 Å; par action de la chaux sur l'oxyde VO₂ à 1000°C en tube de silice ces

Copyright © 1976 by Academic Press, Inc. All rights of reproduction in any form reserved. Printed in Great Britain mêmes auteurs obtenaient un mélange hétérogène.

Outre CaVO₃, Déduit (3) mettait en évidence deux autres hypovanadates:

 CaV_2O_5 de symétrie quadratique, avec les paramètres a = 5.38 Å et c = 4.95 Å, qu'il obtenait toujours mélangée aux phases CaVO₃ de type cubique simple et CaV₃O₇.

 CaV_3O_7 auquel il attribuait un domaine d'homogénéité dont les limites correspondaient à des rapports molaires CaO/VO_2 compris entre 0.26 et 0.42.

Le système $SrO-VO_2$ a été peu étudié. Chamberland et Danielson (4) ont montré l'existence d'une phase $SrVO_3$ de type perovskite cubique (a = 3.8424 Å) préparée sous pression de 65 kb à partir des oxydes SrO et VO_2 à 1000°C. Une étude complète de $SrVO_3$ a été récemment effectuée par Dougier, Fan et Goodenough (5).

Par interaction à 1200°C des oxydes BaO et VO_2 sous pression de 65 kb, les auteurs précédents ont signalé la formation dans le mélange réactionnel d'une phase BaVO₃ de symétrie hexagonale avec les paramètres: a = 5.696 Å et c = 32.122 Å. Feltz et Schmalfuss (6) ont mis également en évidence

une phase BaVO₃ par action à 1200-1250°C de Ba₄V₂O₉ sur V₂O₃; la symétrie est encore hexagonale, mais les paramètres diffèrent de ceux de Chamberland et Danielson: a = 10.02 Å et c = 21.30 Å.

Nous avons été amenés à compléter l'étude des hypovanadates alcalinoterreux dans le cadre plus général d'une étude des systèmes ternaires $MO-V_2O_5-VO_2$ (M = Ca, Sr, Ba) (Bouloux (7), Bouloux, Galy et Hagenmuller (8)).

Le Système CaO-VO₂

Quatre phases ont été mises en évidence dans le système CaO-VO₂: CaVO₃, CaV₂O₅, CaV₃O₇ et CaV₄O₉.

La phase $CaVO_3$

Comme l'ont montré Chamberland et Danielson, il semble difficile de préparer cette phase par interaction des oxydes CaO et VO_2 . Quelle que soit la température (900–1100°C) le vanadium +IV se dismute partiellement.

Par réduction sous courant d'hydrogène du pyrovanadate $Ca_2V_2O_7$ à 720 ± 5°C, la phase $CaVO_3$ est isolée à 95% environ; la réaction s'écrit:

$$Ca_2V_2O_7 + H_2 \rightarrow 2CaVO_3 + H_2O.$$

L'analyse radiocristallographique montre que CaVO₃ ainsi préparé est de type perovskite déformé. Les paramètres cristallins $(a = 5.333 \pm 0.004$ Å, $b = 5.340 \pm 0.004$ Å et $c = 7.536 \pm 0.006$ Å) sont comparables à ceux donnés par Roth (2) puis par Chamberland et Danielson (4), ils ne subissent pas de variation notable même après traitement à 950°C sous une pression de 60 kb suivi d'une trempe.

Le spectre X de CaVO₃ de type cubique simple donné par Déduit (3) présente de grandes analogies avec celui de l'orthovanadate de calcium $Ca_3(VO_4)_2$ (Brixner, Flournoy et Babcock (9)).

La phase CaV_2O_5

Préparée par interaction des oxydes CaO et VO_2 à 900°C en tube de vycor scellé sous vide, CaV_2O_5 n'a pu être isolé. Le spectre de

diffraction X laisse apparaître quelques raies de faible intensité dues à la présence d'hypovanadate CaV_3O_7 , comme l'avait déjà constaté Déduit (3). Au-dessus de 900°C, CaV_2O_5 se décompose, avec dismutation partielle du vanadium +IV aux degrés +V et +III suivant la réaction:

$$5\text{CaV}_2\text{O}_5 \rightarrow 2\text{CaV}_3\text{O}_7 + \text{Ca}_3(\text{VO}_4)_2 + \text{V}_2\text{O}_3.$$

Des traitements thermiques de plusieurs jours effectués à plus basse température, entre 600 et 800°C, n'ont pas permis toutefois d'isoler CaV_2O_5 .

TABLEAU I

Spectre X de CaV₂O₅

$$CaV_2O_5$$
 (ce travail)

hk l	d _{obs} (Å)	d _{caic} (Å)	<i>I</i> / <i>I</i> ₀
001	4.89	4.89	68
201	3.705	3.705	44
110	3.436	3.436	18
301	2.992	2.992	90
011	2.903	2.902	100
400	2.836	2.837	12
111	2.811	2.812	35
310	2.609	2.610	72
002	2.447	2.446	20
102	2.391	2.391	14
311	2.303	2.302	6
202	2.246	2.246	3
501	2.059	2.059	8
302	2.054	2.054	6
411	2.029	2.029	9
012	2.024	2.024	4
112	1.996	1.993	10
510	1.921	1.921	7
212	1.907	1.906	30
600	1.891	1.891	28
402	1.853	1.852	17
020	1.803	1.803	32
511	1.788	1.788	8
601	1.764	1.764	10
021	1.691	1.691	6
412	1.647	1.648	30
221	1.621	1.621	10
611	1.584	1.584	18
203	1.567	1.567	3
321	1.544	1.544	18

Données Radiocristallographiques Relatives aux Phases V2O5, Na0.02V2O5 α , NaV2O5 α' , CaV2O5 et NaV2O4F

	V_2O_5	$Na_{0.02}V_2O_5\alpha$	NaV2O5α'	CaV ₂ O ₅	NaV_2O_4F
Paramètres	<i>a</i> = 11.51 Å	a = 11.516 Å	a = 11.329 Å	a = 11.347 Å	a = 11.318 Å
	<i>b</i> = 3.563 Å	b = 3.565 Å	b = 3.612 Å	b = 3.605 Å	b = 3.609 Å
Groupe spatial	c = 4.369 Å	c = 4.370 Å	c = 4.792 Å	c = 4.892 Å	c = 4.802 Å
	Pmmn	Pmmn	$P_{2}mn$	Pmmn	Pmmn

Par isotypie avec Na_xV₂O₅ α' (0.70 $\leq x \leq 1$) dont la structure a été déterminée par Galy, Casalot, Pouchard et Hagenmuller (10), le spectre X de CaV₂O₅ a été indexé dans le système orthorhombique avec les paramètres: $a = 11.347 \pm 0.005$ Å; $b = 3.605 \pm 0.003$ Å; $c = 4.892 \pm 0.003$ Å.

La règle d'extinction: h + k = 2n + 1 (*hk*0) est respectée et correspond aux groupes spatiaux *Pmmn* ou *P2*₁*mn*.

Le spectre X obtenu pour CaV_2O_5 est différent de celui qu'attribue Déduit à cette même phase. Ce dernier présente d'ailleurs une grande analogie avec celui de V_2O_3 (Tableau I).

Le Tableau II permet de comparer les paramètres des phases V_2O_5 , $Na_xV_2O_5\alpha$ pour x = 0.02 (Pouchard, Casalot, Galy et Hagenmuller (11)), $Na_xV_2O_5\alpha'$ pour x = 1, CaV_2O_5 et NaV_2O_4F (Carpy et Galy (12)).

Les projections idéalisées de ces diverses phases sur le plan x0z sont représentées à la Fig. 1.

Dans le réseau de $Na_xV_2O_5\alpha$ le vanadium possède un environnement oxygéné bipyramidal à base triangulaire. Ces pyramides reliées entre elles par une arête ou un sommet communs constituent des feuillets de composition $(V_2O_5)_n$ qui se développent parallèlement au plan (001). Les atomes de sodium se placent entre les feuillets.

Dans Na_xV₂O₅ α' pour la composition x = 1la moitié des atomes de vanadium possèdent le degré d'oxydation +V, l'autre moitié le degré +IV. Galy, Casalot, Pouchard et Hagenmuller (10) et Carpy (13) ont montré qu'il existait deux sites bipyramidaux bien distincts; ils ont formulé l'hypothèse que la bipyramide la plus volumineuse était occupée par le vanadium +IV et la plus petite par le vanadium +V. Quand on passe du groupe spatial *Pmmn* au groupe $P2_1mn$ le miroir parallèle au plan (100) disparaît, les atomes de sodium qui étaient centrés sur ce miroir dans Na_xV₂O₅ α occupent de ce fait des positions moins symétriques.

Le vanadium est au seul degré d'oxydation +IV dans la phase CaV_2O_5 . On peut en déduire que tous les sites bipyramidaux du vanadium sont identiques. Dans ce cas le miroir parallèle au plan y0z réapparaît et on peut envisager pour CaV_2O_5 non pas le groupe spatial $P2_1mn$ de $NaV_2O_5\alpha'$ mais le groupe Pmmn de $Na_xV_2O_5\alpha$. Dans $NaV_2O_4F\alpha'$ où tout le vanadium est également au degré

FIG. 1. Projections idéalisées des structures des phases V_2O_5 , $Na_xV_2O_5\alpha$ et α' et CaV_2O_5 sur le plan (010).

d'oxydation +IV, Carpy et Galy (12) ont d'ailleurs effectivement montré après étude sur monocristal que le groupe spatial était *Pmmn*.

La phase CaV_3O_7

La phase CaV_3O_7 a été préparée à 900°C par interaction des oxydes CaO et VO_2 . Nous n'avons pas retrouvé autour de cette composition le domaine d'existence annoncé par Déduit.

La structure cristalline de CaV₃O₇ a été déterminée sur monocristal (Bouloux et Galy (14)). CaV₃O₇ cristallise dans le système orthorhombique avec les paramètres a = 10.459 ± 0.008 Å, $b = 5.295 \pm 0.005$ Å et c = 10.382 ± 0.008 Å. Le groupe spatial est *Pnam*; il y a quatre motifs CaV₃O₇ par maille. Ces résultats semblent en accord avec ceux de Kutoglu et Schulien (15).

La phase CaV_4O_9

Cette phase se forme par action à 750°C de l'oxyde de calcium CaO sur le dioxyde de

vanadium VO_2 . Elle se décompose vers 800°C avec formation de CaV_3O_7 et de VO_2 .

L'obtention d'un monocristal nous a permis d'en préciser la structure cristalline (Bouloux et Galy (16)). La symétrie est quadratique, le groupe spatial P4/n, il y a deux motifs CaV₄O₉ par maille. Les paramètres sont: $a = 8.333 \pm$ 0.005 Å et $c = 5.008 \pm 0.003$ Å.

Le Système SrO-VO₂

Deux phases ont été mises en évidence dans le système $SrO-VO_2$: SrV_3O_7 et SrV_5O_{11} . Elles ont été préparées par interaction à 900°C des oxydes SrO et VO_2 en tube de vycor scellé sous vide.

La phase SrV_3O_7

 SrV_3O_7 est isotype de CaV_3O_7 . Les paramètres de la maille orthorhombique sont: $a = 10.606 \pm 0.008$ Å, $b = 5.300 \pm 0.005$ Å et $c = 10.523 \pm 0.008$ Å.

TABI	EAU	III

SPECTRE X DE SrV5O11

I/I ₀	d_{calc} (Å)	$d_{ m obs}({ m \AA})$	h k l	<i>I/I</i> 0	d_{calc} (Å)	$d_{\rm obs}({\rm \AA})$	h k l
3	2.304	2.305	4 1 1	12	11.54	11.56	110
6	2.233	2 221	∫ 7 10	3	8.46	8.46	020
v	2.233	2.231	640	14	7.89	7.90	200
8	2.193	2.194	0 5 1	3	5.31	5.32	130
8	2.127	2.127	5 0 1	6	4.23	4.23	040
3	2.092	2.091	7 30	10	3.943	3.945	400
4	2.043	2.043	2 80	<2	3.846	3.840	330
<2	1.971	1.972	8 0 0	2	3.729	3.740	240
4	1.920	1.919	(820	8	3.574	3.575	420
	1.919		5 70	35	3.310	3.310	150
5	1.864	1.864	4 80	100	3.101	3.100	510
4	1.803	1.803	271	13	2.885	2.883	440
<2	1.771	1.770	3 90	6	2.833	2.831	101
<2	1.743	1.744	910	35	2.821	2.821	060
5	1.737	1.737	7 2 1	6	2.753	2.753	530
13	1.693	1.693	0 10 0	6	2.656	2.660	260
5	1.648	1.647	(770	2	2.629	2.628	600
5	1.648		680	3	2.565	2.565	031
6	1.622	1.622	3 8 1	3	2.510	2.509	620
6	1.619	1.619	8 1 1	10	2.439	2.440	231
16	1.577	1.577	10 00	8	2.420	2.422	321
4	1.563	1.563	8 3 1	<2	2.390	2.388	170

La phase SrV₅O₁₁

SrV₅O₁₁ se décompose vers 1000°C avec dismutation au moins partielle du vanadium +IV en vanadium +V et +III. Mais vers 900°C apparaissent dans la masse cristalline des cristaux sous forme de fines aiguilles. Les clichés de Bragg et de Weissenberg d'une aiguille de SrV₅O₁₁, dont l'axe de croissance est Oz, ont permis de déterminer la symétrie de la maille et les paramètres cristallins, affinés ensuite par indexation du spectre de poudre. SrV₅O₁₁ cristallise dans le système orthorhombique avec les paramètres: $a = 15.772 \pm 0.008$ Å; $b = 16.927 \pm 0.008$ Å; $c = 2.881 \pm 0.002$ Å.

La seule condition d'existence relevée sur les clichés de Weissenberg: hkl: h + k + l = 2ncorrespond aux groupes spatiaux 1222, $12_12_12_1$, *Imm2* ou *Immm*.

La densité expérimentale ($d_{exp} = 4.49 \pm 0.03$) implique quatre motifs SrV₅O₁₁ par maille ($d_x = 4.48$).

L'indexation du spectre de poudre est donnée au Tableau III.

Le Système BaO-VO₂

Aucun hypovanadate de baryum n'a pu être isolé dans nos conditions expérimentales. Quelle que soit la température, entre 900 et 1100°C, l'interaction des oxydes BaO et VO₂ conduit toujours à une dismutation au moins partielle du vanadium +IV en vanadium +V et +III. Ce phénomène avait été déjà observé par Spitsbergen et Jansen (17).

Remarque

Dans les systèmes relatifs au calcium, au strontium et au baryum la dismutation au moins partielle du vanadium +IV s'observe dans nos conditions expérimentales pour des rapports molaires CaO/VO₂ > $\frac{1}{2}$, SrO/VO₂ > $\frac{1}{3}$ et pour toutes les valeurs du rapport BaO/VO₂ dans le domaine de température compris entre 900 et 1100°C.

La Série CaV_nO_{2n+1}—Relations Structurales

Dans le système $CaO-VO_2$ nous avons mis en évidence et déterminé les caractères structuraux des phases CaV_2O_5 , CaV_3O_7 et CaV₄O₉. L'environnement du vanadium y est de type pyramidal à base carrée. Les pyramides s'associent pour former des feuillets de composition $(V_2O_5)_n^{2n^-}, (V_3O_7)_n^{2n^-}$ et $(V_4O_9)_n^{2n^-}$. Les atomes de calcium assurent la cohésion entre les feuillets.

Les hypovanadates de calcium peuvent être rassemblés sous une même formulation $\operatorname{CaV}_{n}O_{2n+1}$ avec $1 \le n \le 4$:

n = 1	CaVO ₃
n=2	CaV_2O_5
<i>n</i> = 3	CaV ₃ O ₇
n=4	CaV ₄ O ₉

Nous avons tenté de les relier sur le plan structural.

La structure de départ est celle de la perovskite CaVO₃. Les structures de CaVO₃ et des phases CaV_nO_{2n+1} (n = 2, 3, 4) diffèrent essentiellement par la nature de l'environnement oxygéné du vanadium +IV. En effet dans CaVO₃ la coordinence est octaédrique, alors que dans les autres hypovanadates elle est de type pyramidal à base carrée.

Principes structuraux de base

Une structure possible de la phase $CaVO_3$, peut être envisagée comme comportant des feuillets dans lesquels les octaèdres se séparent en donnant naissance à des feuillets constitués de pyramides à base carrée entre lesquelles s'insèrent les atomes de calcium. Cette représentation déformée est schématisée à la Fig. 2. CaVO₃ hypothétique, que nous noterons "CaVO₃" possèderait une symétrie quadratique, avec les paramètres:

$$a = 3.76 \text{ Å}$$
 $c \simeq 5 \text{ Å}$ (Tableau IV).

TABLEAU IV

Comparaison des Paramètres des Phases $CaVO_3$, "CaVO₃," CaV₂O₅ CaV₃O₇ et CaV₄O₉

	a (Å)	b (Å)	c (Å)
CaVO ₃	5.321	5.336	7.540
"CaVO ₃ "	= 3.76	= 3.76	$\simeq 5$
CaV ₂ O ₅	11.347	3.605	4.892*
CaV_3O_7	10.459*	5.295	10.382
CaV4O9	(2 × 5.23) 8.333	8.333	5.008*

FIG. 2. Vue en perspective des structures de $CaVO_3$ et "CaVO₃."

FIG. 3. Modes d'association des pyramides à base carrée dans les phases "CaVO₃," CaV₂O₅, CaV₃O₇ et CaV₄O₉.

Dans les phases CaV_2O_5 , CaV_3O_7 et CaV_4O_9 l'écartement moyen entre deux feuillets successifs est voisin de 5 Å. Le paramètre suivant la direction perpendiculaire aux feuillets est marqué d'un astérisque au Tableau IV (dans le cas de CaV_3O_7 le paramètre a concerné est égal au double de la distance entre deux feuillets $(V_3O_7)_n^{2n}$).

Les modes d'association des pyramides à base carrée sont représentés à la Fig. 3. Pour des raisons de nature électrostatique les pyramides VO_5 s'associent de deux manières différentes:

par l'intermédiaire de sommets communs au plan de base, lui aussi commun d'ailleurs, les sommets des pyramides se situant d'un même côté de celui-ci.

par mise en commun d'une arête de base, les sommets se trouvant alors de part et d'autre du plan de base.

Relations structurales

Les projections idéalisées suivant la direction perpendiculaire aux feuillets des structures de "CaVO₃," CaV₂O₅, CaV₃O₇ et CaV₄O₉ sont données à la Fig. 4.

Le feuillet $(V_2O_5)_n^{2n}$ de la structure de CaV_2O_5 dérive directement de celui de

FIG. 4. Projections idéalisées des structures de "CaVO₃," CaV₂O₅, CaV₃O₇ et CaV₄O₉ suivant la direction perpendiculaire aux feuillets.

"CaVO₃" par introduction d'un plan de cisaillement cristallographique parallèle à la direction [010] de "CaVO₃" conduisant ainsi à des pyramides à base carrée liées par arêtes et sommets communs. La symétrie obtenue est orthorhombique.

 CaV_3O_7 peut se déduire d'une manière identique de "CaVO₃," mais en introduisant un plan de cisaillement parallèle à la direction [110] de "CaVO₃." CaV₃O₇ est orthorhombique.

Enfin la phase quadratique CaV_4O_9 s'obtient après un double cisaillement, les plans de cisaillement étant parallèles aux directions [100] et [010] de "CaVO₃."

Ces modes de représentation permettent de relier ainsi toute la série des hypovanadates de calcium CaV_nO_{2n+1} , dans laquelle *n* varie de 1 à 4. L'hypovanadate, CaV_5O_{11} dont la structure pourrait se déduire de ces mécanismes, n'a pu être synthétisé et SrV_5O_{11} semble avoir une structure différente.

References

- 1. W. RUDORFF, G. WALTER ET H. BECKER, Z. Anorg. Allg. Chem. 285, 287 (1956).
- 2. R. S. ROTH, J. Res. Nat. Bur. Stand. 58, 75 (1957).
- 3. J. DEDUIT, Ann. Chem. 6, 163 (1961).

- 4. B. L. CHAMBERLAND ET P. S. DANIELSON, J. Solid State Chem. 3, 243 (1971)
- 5. P. DOUGIER, J. C. C. FAN ET J. B. GOODENOUGH, J. Solid State Chem., en cours de parution.
- 6. A. FELTZ ET S. SCHMALFUSS, Kristall und Technik. 6 (3), 367 (1971).
- 7. J. C. BOULOUX, These de Doctorat es Sciences, Universite de Bordeaux I (1973).
- 8. J. C. BOULOUX, J. GALY ET P. HAGENMULLER, Rev. Chim. Min. 11, 8 (1974).
- 9. L. BRIXNER, P. FLOURNOY ET K. BABCOCK, J. Electr. Chim. Soc. 111, 873 (1964).
- 10. J. GALY, A. CASALOT, M. POUCHARD ET P. HAGEN-MULLER, C.R. Acad. Sci. 262, 1055 (1966).

- 11. M. POUCHARD, A. CASALOT, J. GALY ET P. HAGEN-MULLER, Bull. Soc. Chim. Fr. 11, 4343 (1967).
- 12. A. CARPY ET J. GALY, Bull. Soc. Fr. Miner. Cristallogr. 94, 24 (1973).
- 13. A. CARPY, These de Doctorat es Sciences, Universite de Bordeaux I (1973).
- 14. J. C. BOULOUX ET J. GALY, Acta Crystallogr. B29, 269 (1973).
- 15. A. KUTOGLU ET S. SCHULIEN, *Naturwissenschaften* 59 (1), 36 (1972).
- 16. J. C. BOULOUX ET J. GALY, Acta Crystallogr. B29, 1335 (1973).
- U. SPITSBERGEN ET P. W. J. JANSEN, J. Phys. Chem. 66, 2273 (1962).